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LETTER TO THE EDITOR

Two models of a g-deformed hydrogen atom
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Poland

Received 20 July 1992

Abstract. Two possible methods of deformation of a hydrogen-like system in terms of the

g-(deformed) boson operators are constructed, In the first case the system has SU,(2)®

SU,(2) symmetry, while in the second S(®7.,U,(1)) symmetry. The energy level

degeneracy and splitting for both cases are explicitly calculated.

The theory of quantum algebras (deformations of quantum universal enveloping
algebras) and quantum groups has several applications in a wide range of physical
domains (statistical mechanics and solvable models [2], rational conformal field theory
[1]). The nuclear rotational spectroscopy [4, 6] and atomic spectroscopy [14, 15] still
attract much attention.

The g-analogue of the hydrogen atom has been investigated recently by Kibler and
Negadi [14]. They considered a deformation of the Pauli equations as well as applying
the Kustaanheimo-Stiefel (ks} transformation to achieve an alternative result, Those
models possess the SU,(2)®SU,(2) and SU,(4) symmetry respectively. The 2s-2p
Dirac shift was proposed by these authers in the context of the SU {4} model; however,
constraints connected to the ‘usual’ (g =1) ks transformation were not taken into
account. Thus, the energy levels of this model were not in agreement with the ones in
a quantum mechanical limit.

On the other hand, Xing-Chang Song and Li Liao [15] used another way to approach
the subject which employs non-commutative differential calculus on the quantum
orthogonal planes. They solved the deformed version of the Schrodinger equation for
the attractive Coulomb potential V= —e?/r and showed that the energy eigenvalues
are proportional to [n]~> (where [ ] denotes a g-number [n}=(g"—q™")/(g~q™")).

The aim of this letter is to strictly obtain the discrete spectrum (E <0) of the
g-(deformed) hydrogen atom using the connection between this and a g-quantum,
d-dimensional harmonic oscillator given by the ks transformation. The approach in
this letter is twofold: it allows us to introduce the SU,(2)®SU,(2) symmetry group
of the g-hydrogen atom as well as to show an alternative S(®{., U,(1)) model. To
this end we start with the g-quantum version of a ‘usual’ SU{d ) symmetry Hamiltonian:

d + +
h=%. E (AA+AA) )
iw]
where [A,, Aj] =1. The prescription of a g-deformation of the quantum mechanical
oscillator is well known at the moment in contrast to other physical objects where
there does not exist a simple correspondence between g-deformed and ‘usual’ descrip-
tions (e.g. [5]). Hence, we will construct two possible g-quantum versions of (1) in
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terms of the g-boson operators. Then, we will employ these results to the ks-transformed
Schrodinger equation of the hydrogen atom.

The description of that transformation which boils down to the following {x;:
i=1,2,3}e R*> R*s3{u,: a=1,2, 3, 4} surjection

X =ut—ui—ujtul
Xy = 2( 1ty — U3lts)

(2)

X3 =2ty Uy + tzu,)}
3 Y24
-(2x) -3%a

ir=l

as well as its application to the ‘usual’ hydrogen-like systems, has received a great deal
of attention [3, 7, 8, 12, 13, 16]. The surjection (2) enables us to write the Schrédinger

FEELRARERENSES LYy Ty Rey Avy &V wARAN AR T RASAs WARRS RS AW AV ORARW MWLV R DVE
equation as the R partial dlﬂerentlal equation [14]:
(—(1/2p)A, +(1/2pr) R —4Ze*)|¥) = 4rE|¥) (3}
with reduced mass p and nucleus charge Ze, where
4 4
A=} ai=_ x Pi R = 14,8, — 39, + thy03 — Uyd4. 4)
a=1 a=1

The operator R turns out to be an infinitesimal operator of a subgroup U(1) of a group
0(4). Since we require the wavefunction (#|¥) to be univalued the condition R|Jr)=
has to be fulfilled [3]. For our purpose the canonical transformation {u,,, P,} = {x., p.}
[12] can be involved. Thus we arrive at the Schrodinger equation of a four-dimensional
harmonic oscillator (E <0):

supplemented by the additional constraint relation

xs x4)\|\l“) 0 (6)

{:".-:(P|+P2 pa P4)
where M = uv—E, p.w =1.
Let us focus on the two g-analogues of the Hamiltonian (1). As it is well known,
the g-deformed boson operators satisfy the following relations (e.g. [10, 11]):

+ + _
aia;—g*vaa, = 8,97

[N, N)=['@, @1=0  [Nl=aa 7
[N, aj] = 6.’1“;‘
[M’ af]=—6fjai i,j=1,2,3,,..,d.

The g-Fock space ¥ is spanned by
HKy=span{|n,, na,...,na)={([m]... [nd]!)‘”zfl"l e ;"JIO):
ai|0)=0,N,-lnl,...,nd)=n,-|n1,...,nd) Vi=l,...,d} (8)
where [7]=(¢q"-¢ ")/ (q—q"").
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Taking into consideration the idea given by Floratos [9] (i.e. ‘g-summation rule’)
to the construction of the g-deformed SU,(d) variant of the oscillator we arrive at the
g-Hamiltonian:

el 5 [£ e
e=FIL

i=1

{1+ s)d]
9
. ©®)
which is diagonal on .
As in the one-dimensional case the energy levels consist of two terms

E?")=E?ﬂ),+l+E?ﬂ),—l E?ﬂ),l=E?n+d),—| (n)=nl+.4.+ﬂd (10)
with either even and odd numbers of excitations (d = 1(mod 2)) or the same parity
(d =2(mod 2)). For the g-system described by (8), as long as (n) is fixed, the energy

levels E{,) are degenerated. The degree of degeneracy equals the ‘usual’ one which is
given by the number of partitions of (n)+d into integers:

(m)+d-1
degE(,,)e ( d—1 .

On the other hand the g-analogues of the d-dimensional oscillator can be achieved
by considering d copies of a free g-oscillator:

(1)

d 1+
=X I [-Nr+ > E]- (12)
i=1 g==%|]
In the Fock space (8) the eigenvalues of (12) are:
‘é?ﬂ)z Z E.'?n).s (")=n1+...+nd
e=FI1
(13)
= 2 1+
Ely.=3 L ["i"‘ > 6].
i=1

In contrast to the first case, since (n) is fixed, each energy level bzz',,,,s splits into
B((n)+d, d) levels

d

E.?").E= Z z E(nmax LN (14)

i=1 max{n;)<<(n)

distinguished in addition by the number max(n;) = max{n,, ..., n;} for each n, < (n).
The number B((n)+d, d} is a number of partitions of ({(n)+d) into d integers where
partitions which differ only in an order of components are identified:

B(m, d)=(m""/((d —1)1d )+ Ry_o(m)) (15)
where (x) denotes the integer nearest to x and R,_5(m) is the polynomial of the
variable m and a degree no greater than (d ~2) with coefficients being functions of
the rest m(mod d!). So, to define (15) for a d-dimensional g-oscillator, 4! polynomials
are indispensable, e.g.

{(n)+2)/2) (n}=0(mod 2),
2=

Blm+2,2) {<((n)+1)/z> (m)=1(mod 2).
Each one of the energy levels E {nmax np,s i degenerated. The degree of degeneracy of
the level labelled with ((n), max n,) such that n,=n,=...=n, k=d, is:

" d
dcg E?H.MBX e = (k) (17)

(16}
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and the distance

Afnn—n)= é?n.max nide ™ Efn-n.max(n,—m,s (18)
is given by:

Afun—1y=cosh s(max(n;—1)) g=e'. (19)

At this point, we are ready to show how our two models of the g-deformed oscillator
could be connected with the g-deformed hydrogen-like system. To this end we construct
g-versions of equations (5) and (6) according to both ways presented above. Therefore
we get:

~2
E?nl.nz.ng,n.ﬁEg([i M]‘F[i Ne+4]) (20)
i=1 i=1
& -2
Eummno= B8 £ (INI+INH1D) @
as the solutions accompanied by the auxiliary conditions
[N+ Npj|ny =[N3+ Nj]|m) (22)
2 4
{3 avr+ven)im={ £ amae v in 2

respectively, where

Po = (2Mw)V¥(a — a)/2i x, = (2/ M) {a+ a)/2 (24)

have been introduced. The solution (21) of the g-deformed, ks transformed Schrédinger
equation has been given recently by Kibler and Negadi [ 14]. Using the same transforma-
tion and the g-deformed versions (22) and (23) of the ‘usual’ constraints [13] we get,
in addition, an alternative result {20). These ‘g-constraints’ enable us to rewrite the
spectra (20) and (21) as follows:

& = EZU2(m + mp)]+ (20 + 0y +2)]) 72 (25)

> -2
E?ﬂl-"2)=ég(_zl ([nf]+[n1+l])) (26)
where EJ = (16/[41)Ed=-(Z%e*16)/[4].

The above equations describe inequivalent systems (as long as ¢ # 1). The condition
(22) implies the SU,(2)®SU,(2) symmetry of the hydrogen atom while the conditions
(23) symmetry given by a product S(®7., U,(1}) which, in contrast to the ‘usual’ case,
are not isomorphic to each other (e.g. [9]).

Using (11) and (17) one can obtain the degree of degeneracy of the energy levels
deg Efn, = (((n)+2)/2) (27

- 4 m#n
deg E?nl,n2)={ ' 2

1 n,=n;.
Introducing (16), the splitting of each E Bu 4 np level is given as {P((n,+ny+2), ¥}
To conclude we note that these descriptions of the g-quantum hydrogen-like system
have interesting properties—the first one has the full ‘classical’ analogous, the second
one is 2s-2p splittable without relativistic corrections (that has been underlined in

(28)
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[14]}. It seems to be worth pointing out the non-trivial role of the ‘g-constraints’ put
into both cases on the system, especially because these admit the results which are in
agreement not only with the ‘classical’ (¢ = 1) limit but also with the g-spectra achieved
by g-quantization of the Pauli equations [14] and by using the non-commutative
differential calculus on the quantum orthogonal planes [6]. However, the unexpected
splitting of the energy levels appears only in connection with the S(®;., U,(1))
symmetry of the g-hydrogen atom.

To sum up, we can say that only further phenomenological data investigations
should lead to a clear conclusion about which g-quantum mechanics appears to be
‘more reasonable’.

1 wish to thank Z Popowicz for stimulating discussions.

References

[1] Alvarez-Gaumé L et al 1989 Phys. Len. 220B 142
[2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[3] Boiteaux M 1972 C.R. Acad. Sci. Ser. B 274 867
[4] Bonatsos I ef af 1991 J. Phys. A: Math. Gen. 24 1.403; 1991 J. Phys. G: Nucl. Part. Phys. 17 L67
[5] Caldi D G 1991 Q-deformations of the Heisenberg equations of motion Preprint New York
[6] Chang Z and Yan H 1991 Phys. Leitt. 156A 192
[71 Chen A C 1980 Phys. Rev. A 22 333
[8] Cornish F H 1984 J. Phys. A: Math. Gen. 17 2191
[9] Floratos E G 1990 The many-body problem for the g-oscillator Preprint Paris
{10] Kulish P P and Damaskinsky E V 1990 [. Phys. A: Math. Gen. 23 L415
[11] Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 45381
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L8373
[12] Negadi T and Kibler M 1984 Phys. Rev. A 29 2891
[13] Negadi T and Kibler M 1983 J. Phys. A: Math. Gen. 16 4265
[14] Negadi T and Kibler M 1991 J. Phys. A: Math. Gen. 24 5283
[15] Song X-C and Liao 1. 1992 J. Phys. A: Math. Gen, 25 623
[16] Stiefel E and Kustaanheimo P 1965 L Reine Angew, Marh. 218 204

oy o2llGdCl L Al0 R siaal {4 L



