Two models of a q-deformed hydrogen atom

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L1281
(http://iopscience.iop.org/0305-4470/25/23/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Two models of a \boldsymbol{q}-deformed hydrogen atom

Jolanta Gora
Institute of Theoretical Physics, University of Wrocław, 1 Maxa Borna Square, Wrocław, Poland

Received 20 July 1992

Abstract

Two possible methods of deformation of a hydrogen-like system in terms of the q-(deformed) boson operators are constructed. In the first case the system has $\mathrm{SU}_{q}(2) \otimes$ $\mathrm{SU}_{q}(2)$ symmetry, while in the second $\mathrm{S}\left(\otimes_{i=1}^{4} \mathrm{U}_{q}(1)\right)$ symmetry. The energy level degeneracy and splitting for both cases are explicitly calculated.

The theory of quantum algebras (deformations of quantum universal enveloping algebras) and quantum groups has several applications in a wide range of physical domains (statistical mechanics and solvable models [2], rational conformal field theory [1]). The nuclear rotational spectroscopy [4,6] and atomic spectroscopy [14, 15] still attract much attention.

The q-analogue of the hydrogen atom has been investigated recently by Kibler and Negadi [14]. They considered a deformation of the Pauli equations as well as applying the Kustaanheimo-Stiefel (Ks) transformation to achieve an alternative result. Those models possess the $\mathrm{SU}_{q}(2) \otimes \mathrm{SU}_{q}(2)$ and $\mathrm{SU}_{q}(4)$ symmetry respectively. The $2 \mathrm{~s}-2 \mathrm{p}$ Dirac shift was proposed by these authors in the context of the $\mathrm{SU}_{q}(4)$ model; however, constraints connected to the 'usual' ($q=1$) ks transformation were not taken into account. Thus, the energy levels of this model were not in agreement with the ones in a quantum mechanical limit.

On the other hand, Xing-Chang Song and Li Liao [15] used another way to approach the subject which employs non-commutative differential calculus on the quantum orthogonal planes. They solved the deformed version of the Schrödinger equation for the attractive Coulomb potential $V=-e^{2} / r$ and showed that the energy eigenvalues are proportional to $[n]^{-2}$ (where [] denotes a q-number $[n]=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$).

The aim of this letter is to strictly obtain the discrete spectrum $(E<0)$ of the q-(deformed) hydrogen atom using the connection between this and a q-quantum, d-dimensional harmonic oscillator given by the ks transformation. The approach in this letter is twofold: it allows us to introduce the $\mathrm{SU}_{q}(2) \otimes \mathrm{SU}_{g}(2)$ symmetry group of the q-hydrogen atom as well as to show an alternative $S\left(\otimes_{i=1}^{4} U_{q}(1)\right)$ model. To this end we start with the q-quantum version of a 'usual' $S U(d)$ symmetry Hamiltonian:

$$
\begin{equation*}
h=\frac{1}{2} \sum_{i=1}^{d}\left(A_{i}{\stackrel{+}{A_{i}}}^{+}+\stackrel{+}{A}_{i} A_{i}\right) \tag{1}
\end{equation*}
$$

where $\left[A_{i}, \stackrel{\rightharpoonup}{A}_{j}\right]=1$. The prescription of a q-deformation of the quantum mechanical oscillator is well known at the moment in contrast to other physical objects where there does not exist a simple correspondence between q-deformed and 'usual' descriptions (e.g. [5]). Hence, we will construct two possible q-quantum versions of (1) in
terms of the q-boson operators. Then, we will employ these results to the ks-transformed Schrödinger equation of the hydrogen atom.

The description of that transformation which boils down to the following $\left\{x_{i}\right.$: $i=1,2,3\} \in R^{3} \rightarrow R^{4} \ni\left\{u_{\alpha}: \alpha=1,2,3,4\right\}$ surjection

$$
\begin{align*}
& x_{1}=u_{1}^{2}-u_{2}^{2}-u_{3}^{2}+u_{4}^{2} \\
& x_{2}=2\left(u_{1} u_{2}-u_{3} u_{4}\right) \\
& x_{3}=2\left(u_{1} u_{3}+u_{2} u_{4}\right) \tag{2}\\
& r=\left(\sum_{i=1}^{3} x_{i}^{2}\right)^{1 / 2}=\sum_{\alpha=1}^{4} u_{\alpha}^{2}
\end{align*}
$$

as well as its application to the 'usual' hydrogen-like systems, has received a great deal of attention $[3,7,8,12,13,16]$. The surjection (2) enables us to write the Schrödinger equation as the R^{4} partial differential equation [14]:

$$
\begin{equation*}
\left(-(1 / 2 \mu) \Delta_{u}+(1 / 2 \mu r) R-4 Z e^{2}\right)|\Psi\rangle=4 r E|\Psi\rangle \tag{3}
\end{equation*}
$$

with reduced mass μ and nucleus charge $Z e$, where

$$
\begin{equation*}
\Delta_{u}=\sum_{\alpha=1}^{4} \partial_{\alpha}^{2}=-\sum_{\alpha=1}^{4} P_{\alpha}^{2} \quad R=u_{4} \partial_{1}-u_{3} \partial_{2}+u_{2} \partial_{3}-u_{1} \partial_{4} \tag{4}
\end{equation*}
$$

The operator R turns out to be an infinitesimal operator of a subgroup $U(1)$ of a group $O(4)$. Since we require the wavefunction $\langle u \mid \Psi\rangle$ to be univalued the condition $R|\Psi\rangle=0$ has to be fulfilled [3]. For our purpose the canonical transformation $\left\{u_{\alpha}, P_{\alpha}\right\} \rightarrow\left\{x_{\alpha}, p_{\alpha}\right\}$ [12] can be involved. Thus we arrive at the Schrödinger equation of a four-dimensional harmonic oscillator ($E<0$):

$$
\begin{equation*}
\left(-\frac{1}{2 M} \sum_{\alpha=1}^{4} p_{\alpha}^{2}+\frac{M \omega^{2}}{2} \sum_{\alpha=1}^{4} x_{\alpha}^{2}\right)|\Psi\rangle=\left(\frac{4 Z e^{2}}{\sqrt{-E}}\right)|\Psi\rangle \tag{5}
\end{equation*}
$$

supplemented by the additional constraint relation

$$
\begin{equation*}
\left(\frac{1}{2 M}\left(p_{1}^{2}+p_{2}^{2}-p_{3}^{2}-p_{4}^{2}\right)+\frac{M \omega^{2}}{2}\left(x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right)\right)|\Psi\rangle=0 \tag{6}
\end{equation*}
$$

where $M=\mu \sqrt{-E}, \mu \omega^{2}=1$.
Let us focus on the two q-analogues of the Hamiltonian (1). As it is well known, the q-deformed boson operators satisfy the following relations (e.g. [10, 11]):

$$
\begin{align*}
& a_{i} \stackrel{+}{j}_{j}-q^{\delta_{i j}}{ }_{j}^{+} a_{i}=\delta_{i j} q^{-N_{i}} \\
& {\left[N_{i}, N_{j}\right]=\left[\stackrel{+}{a_{i}}, \stackrel{(+)}{a_{j}}\right]=0 \quad\left[N_{i}\right]=\stackrel{+}{a_{i}} a_{i}} \tag{7}\\
& {\left[N_{i}, \stackrel{+}{a_{j}}\right]=\delta_{i j} \stackrel{+}{a}_{i}} \\
& {\left[N_{i}, a_{j}\right]=-\delta_{i j} a_{i} \quad i, j=1,2,3, \ldots, d .}
\end{align*}
$$

The q-Fock space \mathscr{H}_{F} is spanned by

$$
\begin{align*}
& \mathscr{H}_{F}=\operatorname{span}\left\{\left|n_{1}, n_{2}, \ldots, n_{d}\right\rangle=\left(\left[n_{1}\right]!\ldots\left[n_{d}\right]!\right)^{-1 / 2} a^{+} n_{1} \ldots \stackrel{+}{a^{n_{d}}|0\rangle}\right. \\
& \left.\quad a_{i}|0\rangle=0, N_{i}\left|n_{1}, \ldots, n_{d}\right\rangle=n_{i}\left|n_{1}, \ldots, n_{d}\right\rangle \quad \forall i=1, \ldots, d\right\} \tag{8}
\end{align*}
$$

where $[n]=\left(q^{n}-q^{-n}\right) /\left(q-q^{-1}\right)$.

Taking into consideration the idea given by Floratos [9] (i.e. ' q-summation rule') to the construction of the q-deformed $\mathrm{SU}_{q}(d)$ variant of the oscillator we arrive at the q-Hamiltonian:

$$
\begin{equation*}
H_{q}=\frac{1}{2} \sum_{\varepsilon=\mp 1}\left[\sum_{i=1}^{d} N_{i}+\frac{(1+\varepsilon) d}{2}\right] \tag{9}
\end{equation*}
$$

which is diagonal on \mathscr{H}_{F}.
As in the one-dimensional case the energy levels consist of two terms
$E_{(n)}^{q}=E_{(n),+1}^{q}+E_{(n),-1}^{q} \quad E_{(n), 1}^{q}=E_{(n+d),-1}^{q} \quad(n)=n_{1}+\ldots+n_{d}$
with either even and odd numbers of excitations $(d=1(\bmod 2))$ or the same parity $(d=2(\bmod 2)$). For the q-system described by (8), as long as (n) is fixed, the energy levels $E_{(n)}^{q}$ are degenerated. The degree of degeneracy equals the 'usual' one which is given by the number of partitions of $(n)+d$ into integers:

$$
\begin{equation*}
\operatorname{deg} E_{(n), \varepsilon}^{q}=\binom{(n)+d-1}{d-1} \tag{11}
\end{equation*}
$$

On the other hand the q-analogues of the d-dimensional oscillator can be achieved by considering d copies of a free q-oscillator:

$$
\begin{equation*}
\tilde{H}_{q}=\frac{1}{2} \sum_{i=1}^{d} \sum_{\varepsilon= \pm 1}\left[N_{i}+\frac{1+\varepsilon}{2}\right] \tag{12}
\end{equation*}
$$

In the Fock space (8) the eigenvalues of (12) are:

$$
\begin{align*}
& \tilde{E}_{(n)}^{q}=\sum_{\varepsilon=\mp 1} \tilde{E}_{(n), \varepsilon}^{q} \quad(n)=n_{1}+\ldots+n_{d} \\
& \tilde{E}_{(n), \varepsilon}^{q}=\frac{1}{2} \sum_{i=1}^{d}\left[n_{i}+\frac{1+\varepsilon}{2}\right] . \tag{13}
\end{align*}
$$

In contrast to the first case, since (n) is fixed, each energy level $\tilde{E}_{(n), \varepsilon}^{q}$ splits into $\mathfrak{P}((n)+d, d)$ levels

$$
\begin{equation*}
\tilde{E}_{(n), \varepsilon}^{q}=\sum_{i=1}^{d} \sum_{\max \left(n_{i}\right)<(n)} \tilde{E}_{\left(n, \max n_{i}\right), \varepsilon}^{q} \tag{14}
\end{equation*}
$$

distinguished in addition by the number $\max \left(n_{i}\right)=\max \left\{n_{1}, \ldots, n_{d}\right\}$ for each $n_{i}<(n)$. The number $\mathfrak{B}((n)+d, d)$ is a number of partitions of $((n)+d)$ into d integers where partitions which differ only in an order of components are identified:

$$
\begin{equation*}
\mathfrak{F}(m, d)=\left\langle m^{d-1} /((d-1)!d!)+R_{(d-2)}(m)\right\rangle \tag{15}
\end{equation*}
$$

where $\langle x\rangle$ denotes the integer nearest to x and $R_{(d-2)}(m)$ is the polynomial of the variable m and a degree no greater than ($d-2$) with coefficients being functions of the rest $m(\bmod d!)$. So, to define (15) for a d-dimensional q-oscillator, d ! polynomials are indispensable, e.g.

$$
\mathfrak{P}((n)+2,2)= \begin{cases}\langle((n)+2) / 2\rangle & (n)=0(\bmod 2) \tag{16}\\ \langle((n)+1) / 2\rangle & (n)=1(\bmod 2)\end{cases}
$$

Each one of the energy levels $\tilde{E}_{\left(n, \max n_{i}\right), \varepsilon}^{q}$ is degenerated. The degree of degeneracy of the level labelled with $\left((n), \max n_{i}\right)$ such that $n_{1}=n_{2}=\ldots=n_{k}, k \leqslant d$, is:

$$
\begin{equation*}
\operatorname{deg} \tilde{E}_{\left(n, \max n_{i}\right), \varepsilon}^{q}=\binom{d}{k} \tag{17}
\end{equation*}
$$

and the distance

$$
\begin{equation*}
\Delta_{(n, n-1)}^{\epsilon}:=\tilde{E}_{\left(n, \max n_{1}\right), \varepsilon}^{q}-\tilde{E}_{\left(n-1, \max \left(n_{1}-1\right)\right), \varepsilon}^{q} \tag{18}
\end{equation*}
$$

is given by:

$$
\begin{equation*}
\Delta_{(n, n-1)}^{E}=\cosh s\left(\max \left(n_{i}-1\right)\right) \quad q=\mathrm{e}^{s} . \tag{19}
\end{equation*}
$$

At this point, we are ready to show how our two models of the q-deformed oscillator could be connected with the q-deformed hydrogen-like system. To this end we construct q-versions of equations (5) and (6) according to both ways presented above. Therefore we get:

$$
\begin{align*}
& E_{\left(n_{1}, n_{2}, n_{3}, n_{4}\right)}=E_{0}^{q}\left(\left[\sum_{i=1}^{4} N_{i}\right]+\left[\sum_{i=1}^{4} N_{i}+4\right]\right)^{-2} \tag{20}\\
& \tilde{E}_{\left(n_{1}, n_{2}, n_{3}, n_{4}\right)}^{q}=\tilde{E}_{0}^{q}\left(\sum_{i=1}^{4}\left(\left[N_{i}\right]+\left[N_{i}+1\right]\right)\right)^{-2} \tag{21}
\end{align*}
$$

as the solutions accompanied by the auxiliary conditions

$$
\begin{align*}
& {\left[N_{1}+N_{2}\right]|n\rangle=\left[N_{3}+N_{4}\right]|n\rangle} \tag{22}\\
& \left\{\sum_{i=1}^{2}\left(\left[N_{i}\right]+\left[N_{i}+1\right]\right)\right\}|n\rangle=\left\{\sum_{i=3}^{4}\left(\left[N_{i}\right]+\left[N_{i}+1\right]\right)\right\}|n\rangle \tag{23}
\end{align*}
$$

respectively, where

$$
\begin{equation*}
p_{\alpha}=(2 M \omega)^{1 / 2}(a-\stackrel{+}{a}) / 2 \mathrm{i} \quad x_{\alpha}=(2 / M \omega)^{1 / 2}(a+\stackrel{+}{a}) / 2 \tag{24}
\end{equation*}
$$

have been introduced. The solution (21) of the q-deformed, ks transformed Schrödinger equation has been given recently by Kibler and Negadi [14]. Using the same transformation and the q-deformed versions (22) and (23) of the 'usual' constraints [13] we get, in addition, an alternative result (20). These ' q-constraints' enable us to rewrite the spectra (20) and (21) as follows:

$$
\begin{align*}
& E_{\left(n_{1}, n_{2}\right)}^{q}=E_{0}^{q}\left(\left[2\left(n_{1}+n_{2}\right)\right]+\left[2\left(n_{1}+n_{2}+2\right)\right]\right)^{-2} \tag{25}\\
& \tilde{E}_{\left(n_{1}, n_{2}\right)}^{q}=\tilde{E}_{0}^{q}\left(\sum_{i=1}^{2}\left(\left[n_{i}\right]+\left[n_{i}+1\right]\right)\right)^{-2} \tag{26}
\end{align*}
$$

where $E_{0}^{q}=\left(16 /[4]^{2}\right) \tilde{E}_{0}^{q}=-\left(Z^{2} e^{4} 16\right) /[4]^{2}$.
The above equations describe inequivalent systems (as long as $q \neq 1$). The condition (22) implies the $\mathrm{SU}_{q}(2) \otimes \mathrm{SU}_{q}(2)$ symmetry of the hydrogen atom while the conditions (23) symmetry given by a product $S\left(\otimes_{i=1}^{4} U_{q}(1)\right)$ which, in contrast to the 'usual' case, are not isomorphic to each other (e.g. [9]).

Using (11) and (17) one can obtain the degree of degeneracy of the energy levels

$$
\begin{align*}
& \operatorname{deg} E_{\left(n_{1}, n_{2}\right)}^{q}=(((n)+2) / 2) \tag{27}\\
& \operatorname{deg} \tilde{E}_{\left(n_{1}, n_{2}\right)}^{q}= \begin{cases}4 & n_{1} \neq n_{2} \\
1 & n_{1}=n_{2}\end{cases} \tag{28}
\end{align*}
$$

Introducing (16), the splitting of each $\tilde{E}_{\left(n_{1}+n_{2}\right)}^{q_{2}}$ level is given as $\left\{\Re\left(\left(n_{1}+n_{2}+2\right), 2\right)\right\}^{2}$.
To conclude we note that these descriptions of the q-quantum hydrogen-like system have interesting properties-the first one has the full 'classical' analogous, the second one is $2 \mathrm{~s}-2 \mathrm{p}$ splittable without relativistic corrections (that has been underlined in
[14]). It seems to be worth pointing out the non-trivial role of the ' q-constraints' put into both cases on the system, especially because these admit the results which are in agreement not only with the 'classical' $(q=1)$ limit but also with the q-spectra achieved by q-quantization of the Pauli equations [14] and by using the non-commutative differential calculus on the quantum orthogonal planes [6]. However, the unexpected splitting of the energy levels appears only in connection with the $S\left(\otimes_{i=1}^{4} \mathrm{U}_{q}(1)\right)$ symmetry of the q-hydrogen atom.

To sum up, we can say that only further phenomenological data investigations should lead to a clear conclusion about which q-quantum mechanics appears to be 'more reasonable'.

I wish to thank Z Popowicz for stimulating discussions.

References

[1] Alvarez-Gaumé L et al 1989 Phys. Lett. 220B 142
[2] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)
[3] Boiteaux M 1972 C. \bar{R}. Acad. Sci. Ser. $\overline{\mathrm{B}} \mathbf{2 7 4} \overline{8} 67$
[4] Bonatsos D et al 1991 J. Phys. A: Math. Gen. 24 L403; 1991 J. Phys. G: Nucl. Part. Phys. 17 L67
[5] Caldi D G 1991 Q-deformations of the Heisenberg equations of motion Preprint New York
[6] Chang Z and Yan H 1991 Phys. Lett. 156A 192
[7] Chen A C 1980 Phys. Rev. A 22333
[8] Cornish F H 1984 J. Phys. A: Math. Gen. 172191
[9] Floratos E G 1990 The many-body problem for the q-oscillator Preprint Paris
[10] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415
[11] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[12] Negadi T and Kibler M 1984 Phys. Rev. A 292891
[13] Negadi T and Kibler M 1983 J. Phys. A: Math. Gen. 164265
[14] Negadi T and Kibler M 1991 J. Phys. A: Math. Gen. 245283
[15] Song X-C and Liao L 1992 J. Phys. A: Math. Gen. 25623
[16] Stiefel E and Kustaanheimo P 1965 I/ Reine Angew. Math 218204

